Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour.

نویسندگان

  • Jongho Lee
  • Carmel Majidi
  • Bryan Schubert
  • Ronald S Fearing
چکیده

Gecko-inspired microfibre arrays with 42 million polypropylene fibres cm(-2) (each fibre with elastic modulus 1 GPa, length 20 microm and diameter 0.6 microm) were fabricated and tested under pure shear loading conditions, after removing a preload of less than 0.1 N cm(-2). After sliding to engage fibres, 2 cm2 patches developed up to 4N of shear force with an estimated contact region of 0.44 cm2. The control unfibrillated surface had no measurable shear force. For comparison, a natural setal patch tested under the same conditions on smooth glass showed approximately seven times greater shear per unit estimated contact region. Similar to gecko fibre arrays, the synthetic patch maintains contact and increases shear force with sliding. The high shear force observed (approx. 210 nN per fibre) suggests that fibres are in side contact, providing a larger true contact area than would be obtained by tip contact. Shear force increased over the course of repeated tests for synthetic patches, suggesting deformation of fibres into more favourable conformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding-induced adhesion of stiff polymer microfibre arrays. II. Microscale behaviour.

The adhesive pads of geckos provide control of normal adhesive force by controlling the applied shear force. This frictional adhesion effect is one of the key principles used for rapid detachment in animals running up vertical surfaces. We developed polypropylene microfibre arrays composed of vertical, 0.3 microm radius fibres with elastic modulus of 1 GPa which show this effect for the first t...

متن کامل

Sliding induced adhesion of stiff polymer microfiber arrays: 2. Microscale behaviour

The adhesive pads of geckos provide control of normal adhesive force by controlling the applied shear force. This frictional adhesion effect is one of the key principles used for rapid detachment in animals running up vertical surfaces. We developed polypropylene microfiber arrays composed of vertical, 0.3 μm radius fibers with elastic modulus of 1 GPa which show this effect for the first time ...

متن کامل

Simulation of synthetic gecko arrays shearing on rough surfaces.

To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically deriv...

متن کامل

High friction from a stiff polymer using microfiber arrays.

High dry friction requires intimate contact between two surfaces and is generally obtained using soft materials with an elastic modulus less than 10 MPa. We demonstrate that high-friction properties similar to rubberlike materials can also be obtained using microfiber arrays constructed from a stiff thermoplastic (polypropylene, 1 GPa). The fiber arrays have a smaller true area of contact than ...

متن کامل

Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes

Particles trapped in the evanescent field of an ultrathin optical fibre interact over very long distances via multiple scattering of the fibre-guided fields. In ultrathin fibres that support higher order modes, these interactions are stronger and exhibit qualitatively new behaviour due to the coupling of different fibre modes, which have different propagation wave-vectors, by the particles. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 5 25  شماره 

صفحات  -

تاریخ انتشار 2008